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ABSTRACT 

Multistage stochastic programs are effective for solving 
long-term planning problems under uncertainty. Such 
programs are usually based on a scenario model of 
future environment developments. A good 
approximation of the underlying stochastic process may 
involve a very large number of scenarios and their 
probabilities. We discuss the case when enough data 
paths can be generated, but due to solvability of 
stochastic program the scenario tree has to be 
constructed. The proposed strategy is to generate the 
multistage scenario tree from the set of individual 
scenarios by bundling scenarios based on cluster 
analysis. The K-means clustering approach is modified 
to capture the interstage dependencies in order to model 
the sequential decisions. The described scenario tree 
generation method is implemented on sampled data of 
nominal interest rate. 
 
INTRODUCTION 

The concept of scenarios is usually employed for the 
modeling of randomness in stochastic programming 
models (Yu et al. 2003; Dupačová et al. 2002), in which 
data evolve over time and decisions have to be made 
independent upon knowing the actual paths that will 
occur. Such data are usually subject to uncertainty or 
some kind of risk. For instance, the random variables 
are the return values of each asset on an investment in 
portfolio management problems, and the investment 
decisions must be implemented before the asset 
performance can be observed. Each scenario can be 
viewed as one realization of an underlying multivariate 
stochastic data process. The modeling of randomness 
employees the set of available past data with the aim of 
building sub-models for each individual stochastic 
parameter. These sub-models are then used to generate 
a set of scenarios that encapsulate the consistent 
depictions of pathways to possible futures based on 
assumptions about economic and technological 
developments. Thus, the factors driving the risky events 

are approximated by a discrete set of scenarios, or 
sequence of events. This process is known as scenario 
generation. There are a lot of scenario generation 
methods, see for example (Dupačová et al. 2003; 
Høyland and Wallace 2001; Heitsch and Römisch 2005; 
Pflug 2001; Høyland et al. 2003; Yu et al. 2003). They 
are based on different principles: conditional sampling, 
sampling from given marginals and correlations, 
moment matching, path based methods, optimal 
discretization. 
 
A good approximation may involve a very large number 
of scenarios with probabilities. A better accuracy of 
uncertainties is described when scenarios are 
constructed via a simulated path structure (Hibiki 2003). 
But the number of scenarios is limited by the available 
computing power. According to the complexity of 
stochastic model, the scenario tree structure is used to 
approximate the random process (Heitsch and Römisch 
2005). 
 
In the present paper we concentrate on the scenario 
generation when the underlying stochastic parameters 
have been determined and the data paths of their 
realizations can be generated. Then using the sampled 
paths, the scenario tree is constructed using the 
classifying method, such as clustering analysis. An 
approach similar to our work is introduced in the article 
(Dupačová et al. 2000), but without a detailed clustering 
algorithm. Due to this, the K-means clustering method 
was modified to cluster the data paths, capturing the 
interstage dependence. Such generation of scenario tree 
can be useful in cases when it is difficult to construct 
the adequate scenario tree from the stochastic 
differential equations or time-series models and the 
sampled paths can be obtained by sampling or 
resampling techniques. 
 
SCENARIO GENERATION FOR MULTISTAGE 
STOCHASTIC PROGRAMS 

In general, the scenario generation consists of following 
steps (Domenica et al. 2003):  
 
• Choosing the appropriate model to describe the 

stochastic parameters. For instance, Econometric 
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models and Time Series (Autoregressive models, 
Moving Average models, Vector Auto Regressive 
models), Diffusion Processes (Wiener Processes).  

 
• Calibration of model parameters using historical 

data. 
 
• Generation of data paths from the chosen model. 

Using statistical approximation (Property Matching, 
Non parametric methods) or sampling (Random 
sampling, Bootstrapping) the data paths can be 
generated performing the discretization of the 
distribution. 

 
• Constructing the scenario tree with the desired 

properties. 
 
The aim of scenario generation is to create a tree 
structure of scenarios, which is input in stochastic 
model. Let introduce some notations used in stochastic 
programming. 
 
The original multivariate stochastic data process 

{ }T
tt 0== ξξ  is defined on some probability space 

( )P,,FΩ  with tξ  taking values in some dR . In the 
stochastic programming model the observations and 
decisions are given as a sequence 

( ) ( ) ( )TT xxxx ,,,,,,, 121100 −ξξξ K , where { }T
ttxx 0==  is a 

decision process, measurable function of ξ . The 
constraints on a decision at each stage involve past 
observations and decisions. It means that decision tx  at 
t  is measurable with respect to FF ⊆−1t . Then, 
following the (Dupačová et al. 2000), the decision 
process is said to be nonanticipative. It means that the 
decision ( )11, −−= tttt xxx ξ  taken at any 1>t  does not 
depend on future realizations of stochastic parameters 
or on future decisions. 
 
According to the third step of scenario generation 
process (described at the beginning of this Section), the 
process has to be discrete in time, i.e. { }T,,0 K=T . 
The points in time T∈t  are called as stage index. Then, 
the probability distribution of ξ  is replaced by a finite 

support, i.e. a finite number of realizations sξ , 

Ss ,,1K=  with probability ( )s
s Pp ξ= , 0≥sp  and 

1
1

=∑ =

S

s sp . The set of such realizations 

( )s
T

sss ξξξξ ,,, 10 K= , Ss ,,1K=  is called as simulated 
data paths, or as scenario fan (see Figure 1), if we 
assume that all scenarios coincide at the first time 
period 0=t , i.e. S

0
1
0 ξξ ==K , and form the initial root 

node. The structure of simulated data paths can be 
divided into two stages. The first stage is usually 
represented by a single root node, and the values of 

random parameters during the first stage are known 
with certainty. Moving to the second stage, the structure 
branches into individual scenarios at time 1=t , as 
shown in the Figure 1.  
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Figure 1: Scenario Fan 
 

If such scenario fan is used as input in multistage 
stochastic program, the model is of 2-stage problem, as 
all σ -fields tF , Tt ,,1K=  coincide. The properties of 
2-stage multiperiod stochastic program are (Dupačová 
et al. 2000): 
 
• Decisions at all time instances Tt ,,1,0 K=  are 

made at once and no further information is expected. 
 
• Hedging against all considered unrelated scenarios 

of possible developments is assumed. 
 
• Except for the first stage no nonanticipativity 

constraints appear. 
 
Depending on the considered problem, such properties 
can be regarded as disadvantages. Our aim is to create a 
multistage scenario tree (see Figure 2) which can be 
used for multistage models.  
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Figure 2: Multistage Scenario Tree 
 

Multistage formulation is characterized by its 
robustness, stability of solutions: similar subscenarios 
result in similar decisions. The multistage tree reflects 
the interstage dependency and decreases the number of 
nodes while comparing to the scenario fan. The 
structure of multistage tree at 0=t  is also described by 
a sole root node and by branching into a finite number 



 

 

of scenarios as it was in previous case. The nodes 
further down represent the events of the world which 
are conditional at second stage. The arcs linking the 
nodes represent various realizations of random 
variables. This branching continues for Tt < , resulting 
the multistage tree. 
 
The distinction between stages, which correspond to the 
decision moment, and time periods is essential, because 
it is important in practical application that the number of 
time periods would be greater than the corresponding 
nodes. The algorithm of transforming the scenario fan 
to multistage scenario tree is described in the next 
section. 
 
K-MEANS CLUSTERING: PATH TO TREE 

To construct the multistage scenario tree from the 
scenario fan, the fan of individual scenarios is modified 
by bundling scenarios based on the cluster analysis. It is 
assumed that a set of individual scenarios for the entire 
time horizon is already generated. The objects in such 
set are scenarios with dimension equal to time horizon 
T . The idea of bundling the scenarios to the clusters is 
depicted in the Figure 3. 
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Figure 3: Illustration of 3-stage Tree Construction 
 

In the Figure 3, the fan of 11 scenarios is schematically 
illustrated. At time 0=t  all these scenarios (which are 
the same) form the root of the tree. Next, two clusters 
are formed by the first iteration of some clustering 
algorithm. It results that we have six and five scenarios 
in each cluster. The centers of each cluster are 
computed, which represent the one-level nodes at time 

1=t . Two black points denote the nodes corresponding 
to the conditional decisions. The formed clusters are 
then divided into sub-clusters in the next time period 

2=t . We have four, two, three and two paths in each 
cluster, representing two-level nodes, since the centers 
are calculated. These nodes are denoted by four black 
points in the scenario tree. Such strategy of bundling 
scenarios to the clusters continues till the end of time 
horizon is reached. Joining the black points by line, the 
visual scenario tree structure is obtained. The discussed 
technique allows to produce the tree with such 
characteristics:  

• The projection of random variable nearer the time 
horizon are less critical than those for the near 
future, because number of scenarios S  grows 
smaller down the tree and the centers that represent 
the scenario cluster are calculated from a smaller 
sample size. 

 
• It allows to model extreme events because at every 

stage the simulated scenarios in all of the clusters 
are not discarded, and at the next stage all simulated 
scenarios in all of the clusters are used to calculate 
the centre of cluster. 

 
Before starting to implement this clustering idea, we 
need to define the initial structure of scenario tree: the 
number of stages and the branching scheme. Besides, 
we need to choose some criteria for bundling the 
scenarios. The scenario fan usually consists of large 
number of scenarios, that’s why the hierarchical 
methods can fail. We don’t also require the method that 
in finding the clusters would be optimal by some 
measures. In the literature, the cluster methods usually 
are used for stable data. We have to perform some 
modifications in order to cluster the time dependent 
data. Let assume that K  branches are desired from each 
scenario tree node. It means that K  clusters will need 
to be formed. After such consideration, the K-means 
clustering algorithm (Kaufmann and Rousseeuw 1990) 
is chosen for constructing the scenario tree from the set 
of simulated paths. Clustering consists in partitioning of 
a data set into subsets (clusters), so that the data in each 
cluster share the common attribute. This similarity is 
often defined by some distance measure. Next, we will 
give the formulation of K-means clustering problem. 
 
Given a fan of individual scenarios 

( ),,,, 10
s

T
sss ξξξξ K=  Ss ,,1K=  and the number K  of 

desired clusters KCC ,,1 K , it is needed to find the 
cluster centers kξ , Kk ,,1K=  such that the sum of the 

2-norm distance squared between each scenario sξ  and 

its nearest cluster center kξ  is minimized, i.e.  
 

min
1

2

2

→−∑ ∑
= ∈

K

k C

ks

ksξ

ξξ . 

 
The K-means clustering algorithm, after making it 
suitable for data paths, is given as follows. At the 
beginning the decision moments are set, according to 
the stage index ( )T,t ,1K∈ . Then iterate: 

Step 1:  Setting initial centers. Let kξ , Kk ,,1K=  be 
the cluster centers, which might be chosen to 
be the first K  scenarios, since the scenarios 
are independently generated. 

Step 2: Cluster assignment. For each scenario sξ , 

assign sξ  to the cluster kC , such that center 



 

 

kξ  is nearest to sξ  in the 2-norm, which is 
modified to exploit the whole sequence of 
simulated data path 

 
( )

20
, ∑=

−=
T

i
k

i
s
i

ksd ξξξξ  

 
Step 3: Cluster update. Compute kξ  as the mean of all 

scenarios assigned to the cluster kC  
 

{ } ks C
sk

∈= ξξξ E  
 

This formula can be replaced by other estimate, 
such as median, mode or else. 

Step 4:  Repeat. Go to Step 2 until convergence, i.e. no 
scenario moves group. 

Step 5:  Calculation of probabilities. Probability of kξ  
is equal the sum of probabilities of the 
individual scenarios sξ , belonging to the 

relevant cluster kC . 

Step 6: Modification. Modify ( )s
T

sss ξξξξ ,,, 10 K=  by 

replacing s
tξ  with kξ  if ks

t C∈ξ . 

Step 7:  Repeat. Go to Step 1 if next stage index exists 
and employ this algorithm for each cluster 
individually. In the following iteration, the 
scenarios, obtained from Step 6, are clustered. 

 
This produces a separation of scenarios into groups. The 
given algorithm lets to treat properly the interstage 
dependencies, exploiting the whole sequence of 
simulated scenario path. At the end, the scenario tree is 
constructed, consisting of nodes kξ  with their 
probabilities and the branching scheme. 
 
NUMERICAL EXAMPLE 

In the analysis, Hibbert, Mowbray and Turnbull (HMT) 
stochastic asset model for long-term financial planning 
purposes (Hibbert et al. 2001) is used to simulate a 
representative set of scenarios of nominal interest rate. 
The role of scenario generator is to develop a model that 
posits plausible projections of future interest rate levels 
rather to explain the past movements in interest rates. 
This model is composed of a number of component 
parts that are driven by a set of stochastic drivers. In 
HMT model presented here, the underlying movements 
in inflation and real interest rates generate the process 
for nominal interest rates. It is also important that these 
variables have to be projected in such a way as to reflect 
the appropriate interdependencies between them. It is 
reasonable to consider the case when interest rates and 
inflation rates move together. Interdependencies 
between these variables are identified through the 
alternative method – copula-based dependency measure 

(Embrechts et al. 2002). In the paper (Pranevicius and 
Sutiene 2003) Gaussian copula and Student’s t-copula 
are investigated to model contemporaneous 
dependencies between real interest rate and inflation 
rate. In the present paper we employ only the Gaussian 
copula with correlation coefficient 25.0=ρ . To 
generate the nominal interest rate, such conditions about 
the environment are assumed: inflation level is 2.5%, 
long-term inflation level is 2.83%, current 3-month T-
bill norm is 5% and current 10-year T-bond yield is 
5.58%. At the output of this scenario generator the data 
consist of a finite number of scenarios ( 1000=S ), 
representing the realizations of a monthly nominal 
interest rate for a time horizon of 10 years. The 
dimension of the scenario fan of nominal interest rate is 
given in Table 1. 

 
Table 1: Dimension of Scenario Fan  

 
 Nodes Time periods Scenarios
Nominal interest rate 120000 120 1000 

 
Such scenario fan is aimed to transform to scenario 
trees with different number of stages, employing the 
clustering algorithm discussed in Section “K-Means 
Clustering: Path to Tree”. The number of stages 
depends on the number of decision moments. The 
branching scheme of scenario tree depends from the 
number of clusters. For instance, we choose 2=K  and 

3=K  number of scenarios which should be generated 
per scenario tree node. The five types of scenario trees 
are generated for the analysis: 2-stage scenario tree with 
decision moment 10=t , 3-stage scenario tree with 
decision moments 10,2=t , 4-stage scenario tree with 
decision moments 10,4,2=t , 5-stage scenario tree with 
decision moments 10,6,4,2=t , 6-stage scenario tree 
with decision moments 10,8,6,4,2=t . Table 2 shows 
the dimensions of scenario trees for the cases with 

2=K  scenarios and with 3=K  scenarios from each 
node. 
 

Table 2: Dimensions of Scenario Trees  
 

 K=2 K=3 
 Nodes Scenarios Nodes Scenarios

 2-stage tree 3 2 4 3 
 3-stage tree 7 4 13 9 
 4-stage tree 15 8 40 27 
 5-stage tree 31 16 121 81 
 6-stage tree 63 32 364 243 
 
Table 2 shows that the bigger number of stages and 
more detailed branching scheme expand the size of 
constructed scenario tree. While transforming the 
scenario fan to scenario tree, the dimension of scenarios 
is notably reduced (see Table 1 and Table 2). 



 

 

Some of statistical characteristics, the mean value and 
the dispersion, of nominal interest rate are calculated for 
the evaluation of generated scenario trees. These 
characteristics are computed at different time moments 
for each of scenario tree with different branching 
scheme. Table 3 and Table 4 provide the obtained 
results (values in percent): in the intersection of rows 
and columns the first number denotes the mean value of 
nominal interest rate, and the second number denotes 
the dispersion of nominal interest rate. Table 5 shows 
the mean value and the dispersion calculated from the 
scenario fan at defined time moments. 
 
Table 3: Characteristics of Scenario Trees with 2=K  

 
Decision moments, in Years  

t=2 t=4 t=6 t=8 t=10 
2-stage 

tree 
_ _ _ _ 7.274

0.041
3-stage 

tree 
5.331 
0.001 

_ _ _ 7.274
0.055

4-stage 
tree 

5.331 
0.001 

5.784 
0.016 

_ _ 7.274
0.062

5-stage 
tree 

5.331 
0.001 

5.784 
0.016 

6.286 
0.043 

_ 7.274
0.069Sc

en
ar

io
 tr

ee
s 

6-stage 
tree 

5.331 
0.001 

5.784 
0.016 

6.286 
0.043 

6.744
0.064

7.274
0.072

 
Table 4: Characteristics of Scenario Trees with 3=K  

 
Decision moments, in Years  

t=2 t=4 t=6 t=8 t=10 
2-stage 

tree 
_ _ _ _ 7.274

0.049
3-stage 

tree 
5.331 
0.003 

_ _ _ 7.274
0.064

4-stage 
tree 

5.331 
0.003 

5.784 
0.025 

_ _ 7.274
0.072

5-stage 
tree 

5.331 
0.003 

5.784 
0.025 

6.286 
0.046 

_ 7.274
0.076Sc

en
ar

io
 tr

ee
s 

6-stage 
tree 

5.331 
0.003 

5.784 
0.025 

6.286 
0.046 

6.744
0.066

7.274
0.081

 
Table 5: Characteristics of Scenario Fan 

 
Time moments, in Years  

t=2 t=4 t=6 t=8 t=10 
Scenario fan 5.331 

0.019 
5.784 
0.037 

6.286 
0.055 

6.744
0.072

7.274
0.089

 
The scenario trees are built to approximate the scenario 
fan. Table 3 – Table 5 show that while building the 
scenario tree from scenario fan, the statistical 
properties, the mean value and dispersion, of data 
process are retained. 
 
The structure of some constructed scenario trees are 
displayed graphically. Figure 4 and Figure 5 depict the 

6-stage scenario tree with 2=K  and 3=K  branching 
structure. 
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Figure 4: Multistage Scenario Tree with 2 Branches 
from Each Node 
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Figure 5: Multistage Scenario Tree with 3 Branches 
from Each Node 

 
CONCLUDING REMARKS 

In the present paper, we described the procedure based 
on simulation and clustering to generate the scenario 
tree from simulated paths. It was shown that the 
constructed trees are much smaller than the given 
scenario fans, and nevertheless, they are good 
approximations with respect to the Euclidean distance 
used to measure the data paths. In the future, the 
constructed scenario tree will be used as an input to a 
decision model. Besides, in the scenario tree the effect 
of using different copulas as dependence structure will 
be investigated. 
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